Source: Google AI Blog

7 links > Hsin-Yuan Huang and Jarrod McClean
Quantum Machine Learning and the Power of Data
22 jun. 2021 - Quantum computing has rapidly advanced in both theory and practice in recent years, and with it the hope for the potential impact in real applications. One key area of interest is how quantum computers might affect machine learning. We recently demonstrated experimentally that quantum computers are able to naturally solve certain problems with complex correlations between inputs that can be incredibly hard for traditional, or “classical”, computers. This suggests that learning models made on quantum computers may be dramatically more powerful for select applications, potentially boasting faster computation, better generalization on less data, or both. Hence it is of great interest to understand in what situations such a “quantum advantage” might be achieved.
 · machine-learning · quantum-computing > Candice Schumann and Susanna Ricco
A Step Toward More Inclusive People Annotations in the Open Images Extended Dataset
15 jun. 2021 - In 2016, we introduced Open Images, a collaborative release of ~9 million images annotated with image labels spanning thousands of object categories and bounding box annotations for 600 classes. Since then, we have made several updates, including the release of crowdsourced data to the Open Images Extended collection to improve diversity of object annotations. While the labels provided with these datasets were expansive, they did not focus on sensitive attributes for people, which are critically important for many machine learning (ML) fairness tasks, such as fairness evaluations and bias mitigation. In fact, finding datasets that include thorough labeling of such sensitive attributes is difficult, particularly in the domain of computer vision.
 · fairness · gender · google-streetview · machine-learning · responsible-ai > Alan Cowen and Gautam Prasad
Understanding Contextual Facial Expressions Across the Globe
24 may. 2021 - It might seem reasonable to assume that people’s facial expressions are universal — so, for example, whether a person is from Brazil, India or Canada, their smile upon seeing close friends or their expression of awe at a fireworks display would look essentially the same. But is that really true? Is the association between these facial expressions and their relevant context across geographies indeed universal? What can similarities — or differences — between the situations where someone grins or frowns tell us about how people may be connected across different cultures?
 · cultural-relativism · emotions · facial-recognition · machine-learning > Google AI
Project Guideline: Enabling Those with Low Vision to Run Independently
18 may. 2021 - For the 285 million people around the world living with blindness or low vision, exercising independently can be challenging. Earlier this year, we announced Project Guideline, an early-stage research project, developed in partnership with Guiding Eyes for the Blind, that uses machine learning to guide runners through a variety of environments that have been marked with a painted line. Using only a phone running Guideline technology and a pair of headphones, Guiding Eyes for the Blind CEO Thomas Panek was able to run independently for the first time in decades and complete an unassisted 5K in New York City’s Central Park.
 · artificial-intelligence · blindness · running > Lucy Yu and Per Karlsson
The Technology Behind Cinematic Photos
24 feb. 2021 - Looking at photos from the past can help people relive some of their most treasured moments. Last December we launched Cinematic photos, a new feature in Google Photos that aims to recapture the sense of immersion felt the moment a photo was taken, simulating camera motion and parallax by inferring 3D representations in an image. In this post, we take a look at the technology behind this process, and demonstrate how Cinematic photos can turn a single 2D photo from the past into a more immersive 3D animation.
 · artificial-intelligence · google · photography > Lora Aroyo and Praveen Paritosh
Uncovering Unknown Unknowns in Machine Learning
11 feb. 2021 - The performance of machine learning (ML) models depends both on the learning algorithms, as well as the data used for training and evaluation. The role of the algorithms is well studied and the focus of a multitude of challenges, such as SQuAD, GLUE, ImageNet, and many others. In addition, there have been efforts to also improve the data, including a series of workshops addressing issues for ML evaluation. In contrast, research and challenges that focus on the data used for evaluation of ML models are not commonplace. Furthermore, many evaluation datasets contain items that are easy to evaluate, e.g., photos with a subject that is easy to identify, and thus they miss the natural ambiguity of real world context. The absence of ambiguous real-world examples in evaluation undermines the ability to reliably test machine learning performance, which makes ML models prone to develop “weak spots”, i.e., classes of examples that are difficult or impossible for a model to accurately evaluate, because that class of examples is missing from the evaluation set.
 · adversarial-ai · crowd-sourcing · generative-adversarial-networks · machine-learning · research > Daniel Freedman and Ehud Rivlin
Quantum Supremacy Using a Programmable Superconducting Processor
28 aug. 2020 - Colorectal cancer (CRC) is a global health problem and the second deadliest cancer in the United States, resulting in an estimated 900K deaths per year. While deadly, CRC can be prevented by removing small precancerous lesions in the colon, called polyps, before they become cancerous. In fact, it is estimated that a 1% increase in the adenoma detection rate (ADR, defined as the fraction of procedures in which a physician discovers at least one polyp) can lead to a 6% decrease in the rate of interval CRCs (a CRC that is diagnosed within 60 months of a negative colonoscopy).
 · quantum-computing