Tag: adversarial-ai

4 links

ai.googleblog.com > Lora Aroyo and Praveen Paritosh
Uncovering Unknown Unknowns in Machine Learning
11 feb. 2021 - The performance of machine learning (ML) models depends both on the learning algorithms, as well as the data used for training and evaluation. The role of the algorithms is well studied and the focus of a multitude of challenges, such as SQuAD, GLUE, ImageNet, and many others. In addition, there have been efforts to also improve the data, including a series of workshops addressing issues for ML evaluation. In contrast, research and challenges that focus on the data used for evaluation of ML models are not commonplace. Furthermore, many evaluation datasets contain items that are easy to evaluate, e.g., photos with a subject that is easy to identify, and thus they miss the natural ambiguity of real world context. The absence of ambiguous real-world examples in evaluation undermines the ability to reliably test machine learning performance, which makes ML models prone to develop “weak spots”, i.e., classes of examples that are difficult or impossible for a model to accurately evaluate, because that class of examples is missing from the evaluation set.
 · adversarial-ai · crowd-sourcing · generative-adversarial-networks · machine-learning · research